Web
Analytics Made Easy - Statcounter
Electroplating Fuel Tanks to remove/prevent corrosion ? - Esprit Chat - TLF - Totally Lotus Jump to content


IGNORED

Electroplating Fuel Tanks to remove/prevent corrosion ?


MrDangerUS

Recommended Posts

Has anyone tried electroplating process to prevent/stop tanks corrosion from the inside-out?

Some motorbike guys do this to their tanks with surprisingly good results.

To clean them up,

there is a simple and effective de-rusting procedure using iron anode and 5% sodium carbonate solution.

My friends argue that consecutive copper plating would promote rapid re-rusting and Nickel plating is the way to go.

Any previous experience or pointers?

Edited by MrDangerUS

MrDangerUS

Link to comment
Share on other sites

  • Replies 13
  • Created
  • Last Reply

Top Posters In This Topic

In honesty, ive always used the tank cleaning and protecting process that can be purchased from frosts......for example on my esprit, I shot blasted the tanks, one required some work as it was pinholed...other was solid. After rectification both went through the same process. Clean and degrease inside, then using the tank sealant both were coated inside. This makes a good impenetrable resin type coating inside the tank, all seams are cleaned and coated. I think its a por product..ive never had issues so long as you do it right...

Link to comment
Share on other sites

I know about POR15 and Caswell epoxy coating processes, but I'd like to know if anyone tried electroplating.

I am investigating feasibility of re-plating inside of the tanks "on the car", without removing them from the vehicle.

Here is the process: http://nickel.vale.com/products/nickelplating/science/pdf/NickelElectroplating.pdf

Edited by MrDangerUS

MrDangerUS

Link to comment
Share on other sites

How are you going to get rid of latent petrol and fumes with the tanks still inside? Also most corrosion over here happens outside - in due to waterlogging of the foam insulation, or are you in a dry state?

In the garage no-one can hear you scream 

Link to comment
Share on other sites

Mark,

Fortunately, my tanks are fine on the outside. The inside is rotting due to high ethanol content in US petrol, (confirmed with chemist). Ethanol reacts with led in Terne-plate coating and neutralise its anti-corrosion properties.

"Users of methanol/gasoline mix found an unsuspected cause of trouble in the gasoline tank, which traditionally has been made of "terne plate," a favorite roofing material of Victorian architects. It is steel sheet coated with 8% tin-lead, making it ideal for resisting rust from water in gas tanks. Methanol reacts with lead, slowly but surely, forming a flaky sludge that plugs filters in the fuel system."

When it comes to the process,I'm still in the planning stage.

Initially, I'll take the cross pipe out and flush tanks with tap water and surfactant before galvanic de-rusting, which should clean them well of oxides.

I plan to do cleaning with 5% sodium carbonate solution and iron or stainless anode.

Edited by MrDangerUS

MrDangerUS

Link to comment
Share on other sites

So far, tanks are fine.

However, there is always a risk that they develop pinholes during the electro cleaning process. If that happens, I'm SOL. I'll have no choice, but to pull them out and go with the epoxy coating inside and POR 15 outside.

If tanks would survive de-rusting, I'd like to deposit 4-5 mil (1 mil = 25.4 um) of hard nickel on the inside surfaces.

There may be a problem, though. On pre-SE cars there is a horizontal baffle above the bottom of the tank. This baffle may impede flow of ions to the very bottom surface below.

Has anyone ever looked inside and can describe the exact location or its shape?

MrDangerUS

Link to comment
Share on other sites

The Chemistry of Cleaning Rusty Iron by Electrolysis

Bill Tindall and Spencer Hochstetler

The cleaning process has 4 components- a battery charger, the water with sodium carbonate (washing soda) dissolved in it, an anode (stainless steel object such as a spoon) and the cathode (the rusty iron).

The solution.

The solution of sodium carbonate has two purposes. First, sodium carbonate is basic. The electrochemical reactions that occur at the rusted iron work best in a basic solution. Lye (sodium hydroxide) would work as well but it is less safe to use. Sodium bicarbonate, baking soda, may not work as well as sodium carbonate because it is less basic.

The other purpose for the sodium carbonate is to make the water conduct electricity. When the salt, sodium carbonate, is dissolved in water it becomes sodium ions, Na+, and carbonate ions CO3-2 . These positive and negative charged ions carry the current in solution. Carbonate moves to the positive wire from the battery charger and sodium moves to the negative wire. This movement of ions through the solution results in a current, just like electrons moving in a wire results in a current. Pure water has a high resistance, about 20 million ohms per centimeter, and negligible current would pass without the sodium carbonate ions.

For electrolysis to proceed at a reasonable rate a high current must flow, which requires a low solution resistance. Solution resistance goes down (current up) as the anode and cathode are made closer together as well as when the concentration of washing soda is increased. A 5% solution of washing soda is a good starting place to try. It is best to surround the rusty item with the anode so the distance between the rust and the anode is about the same so that the current reaching each part of the rust will be about the same. When this arrangement is impractical, the rusted object should be rotated occasionally to get uniform electrolysis.

The battery charger is a source of electrical current and voltage. Current is the flow of electrons in a wire. Voltage is a measure of the electron energy. So, the battery charger provides electrons with energy of 12 volts at its negative lead and accepts electrons at its positive lead. The current indicated by the meter provides a measure of how many electrons are flowing. Current can also flow through water, if the water has ions dissolved in it, as provided by the sodium carbonate. When the battery charger is connected to the solution with a metal anode and cathode, the negatively charged carbonate will migrate to the positively charged anode and sodium will migrate to the cathode. The solution completes the circuit so a current of electrons can flow from the negative wire of the battery charger to its positive wire.

The Anode The simplest anode to consider is an anode made of stainless steel. In this case, the anode is inert, that is, the stainless steel does not under go any chemical reactions. Its only function is to provide electrical contact between the positive lead of the charger and the solution. The copper connector of the battery charger must make good contact with the stainless steel but it must not touch the solution. If it does touch, it will dissolve. The copper that dissolves will wind up depositing on the iron object being cleaned and cause it to rapidly rust (see advanced chemistry section for details). When 12 volts is applied to the anode some chemistry does occur in the solution touching the anode, which will be explained below.

There are two chemistry terms, oxidation and reduction that must be explained in order to understand the chemistry that occurs at the anode and cathode. Oxidation is a chemical reaction where something gives up electrons. When a chemical species gives up electrons we say it oxidizes. For example when iron metal oxidizes it looses two electrons to become ferrous iron, Fe++. If iron loses three electrons it oxidizes to become ferric iron, Fe+++. Reduction is when something accepts electrons. For example, if Fe++ accepted two electrons it would become iron metal, Fe. We would say, ferrous iron was reduced to iron metal.

Oxygen likes to be reduced. When oxygen is reduced, accepts electrons, it makes oxide, O--. If we put oxygen together with iron metal, the iron is oxidized (gives electrons to the oxygen) and the oxygen is reduced (accepts the electrons lost from iron). The product is one form of rust, ferric oxide, Fe2O3. It is always true that whenever something is oxidized, something else must be reduced. Electrons must come from some where (oxidation), to go some where (reduction).

Getting back to the anode..... The anode is hooked to the positive wire of the charger. The positive wire accepts electrons. If the positive wire is accepting electrons something is losing electrons (oxidizing). When 12 volts is applied to the anode, water is oxidized at the anode surface and gives electrons up to the anode. The product is oxygen. The bubbles you see coming from the stainless steel anode are oxygen that resulted from the oxidation of water.

The Cathode

The cathode is connected to the negative wire of the battery charger. The negative wire supplies electrons. Therefore, something must gain electrons at the cathode (reduction). Two things are reduced at the cathode, water and the rusty iron. The reduction of water produces hydrogen. The bubbles coming from the cathode are hydrogen gas. (A safety note: The fuel for the space shuttle is hydrogen and oxygen. Rust electrolysis should be done with good ventilation (outside preferred) so that explosive concentrations of hydrogen and oxygen are not reached.)

The evolution of hydrogen plays a beneficial role in the cleaning process. All these tiny bubbles forming at the surface blast things off the surface that aren’t stuck tightly. Loose rust, grease and even paint are removed by the action of the hydrogen bubbles. This process is sometimes called cathodic cleaning. I suppose the anode is scrubbed too, but who cares.

The reduction of interest is the reduction of the rust. Rust is typically a mixture of many iron compounds. Which iron compounds are present in rust depend on how much oxygen and water was present when it formed and many other factors. The electrochemical reduction of rust is very complicated.

During electrolysis the rust turns from orange to black. It is natural to wonder what the black stuff is. In most cases, the rust next to the iron is reduced to iron metal. This reduced iron will form a somewhat porous layer of new iron on the object cleaned. After electrolysis the iron object will rust very quickly unless it is protected because this porous layer of new iron has a high surface area and it is particularly susceptible to oxidation (rusting). The rest of the rust may reduce to a variety of compounds depending on the compounds in the original rust and the details of the electrolysis. Typically the black stuff that can be rubbed off after electrolysis is a mixture of iron metal and magnetite, Fe3O4 , an oxide of iron. Magnetite is an intermediate product in the reduction of rust back to iron metal. It is the black stuff in magnetic recording tapes.

Advanced Chemistry- Rust is a complicated material. Typically, it is a combination of ferrous and ferric oxides, hydroxides, and hydrated oxides and some of these compounds may be present in several crystal forms.

There is much speculation in the chemical and archeological literature about the products that form when rust is reduced in sodium carbonate. In searching for an answer, people may find a lengthy publication on the DENIX web site (https://www.denix.osd.mil/denix/Public/ES-Programs/Conservation/Underwater/4-IRON-2.html). Much of the electrochemistry described is not correct and the conclusions drawn about reduction products are not in agreement with most chemical literature. It was not until 1996 that some chemists from the Swiss Federal Institute and Brookhaven National Lab did definitive work on this subject (see papers by Virtanen in J. Electrochemical Soc 1996 and 1999). Using a sophisticated X-ray technique they determined what was going on at the cathode when iron oxide is reduced. Normally reductions occur in solution. That is, something has to dissolve before it can be reduced. However, they found that iron oxide will conduct electrons and therefore can be reduced without going into solution. This process is referred to as solid state reduction. The ferric iron atoms in the rust begin to reduce to ferrous oxide, which initially results in a mixture of ferric and ferrous oxides. This combination is called magnetite and is often written as Fe3O4. Eventually, all the ferric oxide becomes ferrous iron. Under less powerful reducing conditions the product would be ferrous carbonate or ferrous hydroxide. However, under the extreme conditions of reduction powered by a 12 V battery charger, they found that ferrous iron can be reduced all the way to iron metal. All this chemistry can occur without any of the iron going into solution. So, based on this work, when we see the rust slowly turning black, we are seeing the formation of Fe3O4 which is black and eventually iron metal, which is also black. Finely divided iron is black, not shiny like a solid chunk of iron. All this work was done under laboratory conditions.

We wanted to find out what happened when a rusty plane iron was reduced in a bucket. We did reductions of a heavily rusted iron object in sodium carbonate under conditions normally used for cleaning rusted objects. We used either a 1 or 5 % solution of sodium carbonate and a 12 volt battery charger and continued electrolysis for about 2 hours. The iron piece was dried under an oxygen free atmosphere (nitrogen). The loose black deposit on the iron surface was removed by sticking it to a piece of tape and it was analyzed by X-ray diffraction. We found that the deposit was magnetite. No iron was detected and no ferric oxides were detected in the black material that readily came off on the tape. Therefore, under our conditions, all the rust was reduced, but the reduction of what had been loose rust did not proceed all the way to iron metal. Perhaps it would have if we had continued electrolysis for a longer time. We had no way of determining whether the rust at the surface of the iron object reduced all the way to iron. We expect that at least some iron was formed at the surface, because after reduction the iron surface rapidly forms red rust (ferric oxide) if it is not quickly dried. Magnetite does not rapidly rust, but finely divided iron will form rust in just a few minutes if it is wet. We conclude, based on our work and that of Virtanen, that rust reduction under the conditions normally used for cleaning, results in the formation of magnetite and possibly some iron metal.

The other chemistry that occurs is the electrolysis of water. At the anode water is oxidized according to this equation

2 H2O = O2 + 4H+ + 4e-

The H+ formed is quickly neutralized by the carbonate to make carbon dioxide. So, some of the bubbles at the anode may be carbon dioxide as well as oxygen. At the cathode water is reduced

H2O + 2e- = H2 + 2OH-

It is important that any copper connected to the anode does not touch the solution. If it does, copper will oxidize to cupric ion, Cu++. The connector will be destroyed. Most of the copper ions formed should precipitate as copper carbonate or copper hydroxide, but if any of this dissolved copper reaches the cathode it will be reduced to copper metal on the iron object. Copper presence will promote rapid re-rusting.

MrDangerUS

Link to comment
Share on other sites

PERILS of ETHANOL

In the case of steel or aluminum tanks, both are conductive metals.

Aluminum relies on an oxide layer for its corrosion protection properties. Steel relies on coatings for its corrosion protection. Low levels of ethanol, such as E10 (10%), are usually not a problem in aluminum tanks because the oxide layer provides a good measure of protection. What about steel? The problem occurs even with 10% ethanol content.

There are two mechanisms that occur with ethanol. Both mechanisms are a result of the hydroscopic property of ethanol, meaning it absorbs water. The more ethanol in the fuel, the more water there will be in the fuel tank. Water not only causes the tank to corrode, it also causes the corrosion particles to clog fuel filters, fuel systems, and damage engine components.

The second mechanism that can occur with the increased use of ethanol based fuel in aluminum or steel tanks is galvanic corrosion. Gasoline fuel is not conductive, but the presence of ethanol or ethanol and water will conduct electricity. Boat builders are able to protect exterior aluminum boat equipment with sacrificial anodes known as zincs. Sacrificial anodes are not a feasible option for the interior of a fuel tank. In the long term, corrosion can perforate aluminum or steel to produce leaks that would cause fuel to spill into the bilge and end up in the environment. In the worse case it could cause a fire and/or explosion hazard. Boat fuel tanks,as well as Lotus Esprit tanks cars are often located under the deck next to the engine where the operator might not be aware of a leak until it was too late.

High Strength-Low Alloy Steels.

High strength-low alloy steels show improved corrosion resistance over carbon steels in rural and mild industrial environments. In marine atmospheres and in immersion services, however, the difference in performance between carbon and low-alloy steels is minor (see Seawater Corrosion & Material Selection). The primary advantage of these materials is their higher strength. But remember that the same amount of material loss will usually have a greater impact on the load carrying capacity of a high strength material than on a low strength material. The high strength-low alloy steels should be protected when used in marine environments. They are somewhat more cathodic than carbon steels.

Alloy Steels.

Steels with higher alloy content are more susceptible to pitting corrosion attack than steels with lower alloy content. Pitting is common in alloys with more than 5% total alloy content. Corrosion rates are similar to carbon and low alloy steels with pitting being only three to five times the corrosion rate calculated from weight loss.

Alloy steels are selected for their higher strength but can be susceptible to hydrogen embrittlement or stress corrosion cracking at yield strengths in excess 100 ksi. The alloy steels are somewhat more cathodic than carbon steels.

MrDangerUS

Link to comment
Share on other sites

Invert, attach to roof, connect fuel lines, cap off existing tanks, press on. :D

H-Zero-DropTank-35.jpg

Being second is to be the first of the ones who lose.

Link to comment
Share on other sites

  • 1 month later...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We use cookies to enhance your browsing experience, serve personalized ads or content, and analyze our traffic. By clicking " I Accept ", you consent to our use of cookies. We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.